ACT UP, 268-271, 298

adenylate cyclase, see adenylyl cyclase

adenylyl cyclase
 ibogaine potentiation of morphine effect on, 7
 ibogaine potentiation of serotonin effect on, 12, 146
 mu-opioid inhibition of, 98-99

Adriaans, Nico
 Dutch Junkiebond and, 253, 283-284
 Dutch Addict Self-Help (DASH) and, 283-4, 298, 302, 311
 Erasmus University and, 258-259, 271, 298
 view on importance of peer counseling in ibogaine treatment, 290

acetylcholine,
 EEG and, 9, 28-29
 muscarinic acetylcholine receptors, iboga alkaloids and, 9, 41, 50
 nicotinic acetylcholine receptors, iboga alkaloids and, 6, 9-10, 41, 50-51
 REM sleep and, 29

affinity of iboga alkaloids at various receptor sites, tables, 41, 81, 167

anomie, 238

anxiety
 cocaine withdrawal and, 146-148
 ibogaine and, 227-234
 kappa-opioid receptors and, 231-232

Bastiaans, Jan, Dr.
 ibogaine treatments in the Netherlands, and, 260, 285, 298
 LSD and, 260

Beal, Dana (see also Cures-not-Wars), 271-272

benzodiazepine receptor, 179

binding, space and time, iboga and, 239, 244

Bin-Wahad, Dhoruba, 272

Bwiti
 estimated dosages of iboga alkaloids used, table, 242
 sacramental use of iboga, 30, 235-247, 294
 work of the ancestors, iboga and, 239, 245
cannabis, market separation from hard drugs, 270

cardiovascular effects, iboga alkaloids, 25, 49, 166-167

cerebellar Purkinje cells, climbing fiber synapses originating from the inferior olive, excitotoxicity and, 12, 184-185

charismatic group, 30

Chemical Abstracts ibogamine skeleton numbering, 3, (see A Note Concerning the Numbering of Iboga Alkaloids)

Christiana, Copenhagen, 261-263

civil disobedience, 267

Clouet, Doris, Dr., 252-253

Cocaine
 cardiovascular effects of ibogaine and 166
 dopamine efflux in the rat NAc, iboga alkaloids and, 15-16
 dopamine efflux in mouse brain slice, ibogaine and effect of kappa-opioid antagonist, 8
 EEG effects of ibogaine and, 196-200
 locomotor response to, iboga alkaloids and, 46-47, 51
 self- administration, iboga alkaloids and 5, 12-13, 16, 22, 42,45-46, 48, 119, 127-129
 sensitization, 15-16, 47-48
 stereotypy and, 46-47
 withdrawal anxiety, ibogaine and, 146-148

colonialism 30, 237-40

corticosterone secretion
 rat, ibogaine and, 200-201
 rat, ibogaine and noribogaine and, 100-103

craving, drug
 animal model, 220-221
 measurement in humans utilizing the Heroin Craving Questionnaire (HCQ-29), 163, 165
 effects on with ibogaine in humans, 16-17, 165-169, 284, 287

Cures-not-Wars, 264, 272, 275
cytochrome P450 2D6 (CYPD2D6), 82-83, 158-161

Czech Republic, ibogaine scene in, 264-265

DASH (Dutch Addict Self-Help), 253, 257-58

Doors of Perception, The, 251

dopamine

 brain tissue levels, effect of ibogaine on, 9, 87-91, 108, 199-202
 efflux, NAc, cocaine, *iboga* alkaloids and, 15-16, 47-48
 efflux, NAc, morphine, *iboga* alkaloids and 15, 45
 efflux, NAc, nicotine, *iboga* alkaloids and 15-16, 47-48
 receptor affinity, *iboga* alkaloids, 9, 41,
 transporter, *iboga* alkaloids and, 9, 86-87, 117

Dole, Vincent P. Dr., 290, 312

DOM (2,5-dimethoxy-4-methylamphetamine), 10, 63, 66-69, 71

Drug discrimination

 beta-carbolines in ibogaine-trained animals, 11, 69-71
 fixed ratio schedule, 64
 NMDA antagonists in ibogaine-trained animals, 11, 72
 nonessential stimulus components, ibogaine, 10-11, 66-69
 noribogaine in ibogaine-trained animals, 11, 74-75
 opioids in ibogaine-trained animals, 73-74
 serotonergic agents in ibogaine-trained animals, 8, 10-11, 66-69, 75
 sigma ligands in ibogaine-trained animals, 74-75

dynorphin, ibogaine and, 11

ECoG (electrocorticogram) 194-200

EEG (electroencephalogram)
 ibogaine and, 9, 24, 28-29
 effect of cocaine in rats pretreated with ibogaine 194-200
 learning and, 29-30

ethanol self-administration, *iboga* alkaloids and, 12, 51, 127

Erasmus University, Rotterdam, 253-254, 257-259, 271, 298

eye movements, observations reported by treatment guides, 30
fatalities, 25-27

FDA (US Food and Drug Administration)
approval of IND submitted by D. Mash, 5, 255, 303
scheduling of ibogaine, 4

fenfluramine, 8, 66, 92, 102, 201

fluoxetine, 11, 69

fluvoxamine, 69

focus group for participants in DASH treatments, 258, 284

Fluoro-Jade, cerebellar degeneration and, 23, 208

Frenken, Geerte, 257

Gabon 4, 253, 265, 294

GFAP (glial fibrillary acid protein), 22-23, 106, 203-204

gender differences
bioavailability, 19-20, 84
kinetics and metabolism of ibogaine and noribogaine in rats, 84-85, 107-108
neuropathology, 22
visual phenomena related to ibogaine in humans, 256

Glick, Stanley, Dr., 253

glycine, 7, 58-59, 61

Goutarel, Robert, 29-30, 256, 275

guide, treatment, 17, 285-288, 300

hallucinations, 18-19, 286

haloperidol, sigma receptor and, 174, 176

harm reduction, 267-268, 270-272, 278, 290

harmaline 107, 174, 184-185, 188

Harms, Josien 257, 283
heroin
 self-administration, ibogaine and, 12-13
 smoking, 26
 withdrawal, human, ibogaine and 17, 155-172, 284-298,
ibogaine
 chemical properties, 2-3
 mechanisms of action, 6-10, 40-41, 49-51, 55-62, 115-133, 140-142, 167-169
 opioid receptors and, 7-8, 41, 167-169
 pharmacokinetics, see pharmacokinetics, ibogaine
 possible differences related to manufacturing source, 119
 price, Slovenia, 261
 scheduling, 4, 250-251, 268, 272

Ibogaine Mailing List 6, 262, 276

Ibogaine Story, The 264, 275

ICASH (International Coalition of Addict Self-Help) 5, 283, 298-299

Internet, 6, 262, 264, 276-277

Isbell, Harris, Dr., 4

Junkiebond, Dutch, 253, 268, 270-271, 283

Kabouters, 269

Kaplan, Charles, Dr., 258-259, 284

Ka-Tzetnik 135633 (Yehiel De-Nur), 260

Kleber, Herbert, Dr. 284

Lambarène, 4, 115

LeMen and Taylor ibogamine skeleton numbering, 3, (see *A Note Concerning the Numbering of Iboga Alkaloids*)

Lieberman, Dan, 263, 265-266

locomotor activity
cocaine, iboga alkaloids, and 14-15, 46-48, 91
morphine, iboga alkaloids and, 14-15, 44-45
stereotypy and, 15, 47

long-term outcomes, ibogaine treatments, 17-18, 156

Lotsof, Howard
 initial observations of ibogaine effect in humans, 4, 251-252, 294-295
 patents for use of ibogaine in drug dependence and, 4-5, 253
 NDA International and, 253-254

LSD (lysergic acid diethylamide)
 Jan Bastiaans and, 260
 5HT2A receptor and, 66-69

Mash, Deborah, Dr.,
 FDA and, 5, 166, 254-55
 St. Kitts and, 17, 25, 155-171, 255

Memantine, 57, 59, 61

18-Methoxycoronaridine (18-MC)
 drug self-administration and, 13, 40-46, 48, 51
 locomotor behavior and, 44-48
 morphine withdrawal and, 40, 43-44, 47, 51
 NMDA receptors and, 41,44-45, 49, 60-61
 opioid receptors and, 41, 44-45, 49, 51
 serotonin and, 41, 49, 51
 sigma receptors and 41, 49, 79-83

morphine
 dopamine efflux in NAc, iboga alkaloids and 15, 45
 locomotor response to, iboga alkaloids and, 14, 44
 modulation of effects by ibogaine, 212
 self-administration, iboga alkaloids and, 42-43, 213-214
 withdrawal, animal, effect of iboga alkaloids, 13-14, 40, 43-44, 51, 98-99, 215-219

mouse
 differences from the rat regarding ibogaine with regard to ibogaine effect on
 locomotor response to cocaine, 15
 differences from the rat regarding ibogaine neurotoxic effects, 207-208
 knockout, 117, 125, 128
 morphine withdrawal and, 14

Naranjo, Claudio, Dr., 4,
NDA International, 15, 251, 253-255, 259-260, 268, 298, 303

NDE (near death experience), 30-31

neurotensin-like immunoreactivity (NTLI), ibogaine and, 11

neurotoxicity
 human evidence 24-25
 neuropathological studies in animals 22-24, 105-107, 202-209
 sigma receptors and, 173-174, 176, 184-186, 188

NIAD (Netherlands Institute for Alcohol and Drugs) 259, 285

nicotine
 dopamine efflux, *iboga* alkaloids and, 10, 15-16, 45, 47
 self-administration/ preference, *iboga* alkaloids and, 5, 12-13, 33, 42, 46

nicotinic acetylcholine receptor, see acetylcholine

NIDA (National Institute on Drug Abuse), 2, 5 252-254, 259, 267, 269, 271-275, 278

NIDA Ibogaine Review Meeting, March 1995, 5, 17

NIH (National Institutes of Health), 273

NMDA (*N*-methyl-D-aspartate)
 affinity of ibogaine for the NMDA receptor 6-7, 41, 56-60, 81, 167
 discriminative stimulus of ibogaine, and, 11, 72-73,
 effects of NMDA antagonists in opioid withdrawal 59
 functional evidence for ibogaine as NMDA antagonist 7, 56-60, 184
 18-MC and, 41,44-45, 49, 60-61
 noribogaine and 41, 60, 81, 105, 167
 sigma receptors and, 174-175, 184-185

norharman, effect on morphine withdrawal, 14

noribogaine (10-hydroxyibogamine)
 identification as a primary metabolite of ibogaine, 81-82, 157-158
 NMDA receptors and 41, 60, 81, 105, 167
 opioid receptors and, 7-8, 41, 81, 108, 167-169
 serotonin receptor interactions, 41, 81, 167
 serotonin release in NAc and, 47
 sigma receptors and, 179-187
 tissue dopamine levels and, 108
normalization, 252, 271

nucleus accumbens (NAc)
 core vs. shell regions, 12, 15-16
 dopamine efflux in response to drugs, effects of *iboga* alkaloids, 15-16, 45, 47-48

olivocerebellar projection, 23, 184-185

oneiric/oneiophrenic effects, 18, 275, 309

opioid receptors, interactions with *iboga* alkaloids,
 ibogaine 8, 41, 167-169
 18-MC 41, 44-45, 49, 51
 noribogaine 7-8, 41, 81, 108, 167-169

Parker, Jon, 24

panoramic memory, 18, 28, 30, 287-288, 299-301

pharmacokinetics, ibogaine
 animal pharmacokinetic studies 19-20, 81-85, 95, 161
 gender and gonadectomy and, 84-85
 heterogeneity among CYP isoforms, 20, 158-160, 162
 humans, 19-20, 159-160

place preference
 amphetamine, ibogaine and, 220
 morphine, ibogaine and, 220

plus maze, 146-148, 151, 229-232

political theater, tactics of, 269-271

prolactin secretion
 rat, effect of ibogaine 200-201
 rat, effect of ibogaine and noribogaine 100-103

Provos, 269

reinstatement paradigm, 220

REM sleep 29-30

Resinovic, Marko, 260-261

Rock Against Racism, 272
runway paradigm, rewarding and aversive effects of drugs and, 220-221

Russia, 285, 291

Sandberg, Nick, 264

Sanders, Chris, 264

“Sara”, 263-264

Secret Chief, The, 256

second messenger signal transduction, ibogaine and, 7, 12, 33, 139-140, 142, 145

sensitization, effects of *iboga* alkaloids on neuroadaptations related to, 12, 15-16, 28, 43-48

serotonin

extracellular levels in NAc, *iboga* alkaloids and, 47, 49
inhibition of adenylyl cyclase, enhancement by ibogaine, 12, 146
putative role in ibogaine’s mechanism of action, 108
release, *iboga* alkaloids and, 8, 49, 102

serotonin (5HT) receptors

5HT2A receptor, LSD and, 8, 10, 66-69
affinity, 5HT1A receptor, *iboga* alkaloids, 41
affinity, 5HT2A receptor, *iboga* alkaloids, 8, 41
affinity, 5HT2C receptor, *iboga* alkaloids, 41
affinity, 5HT3 receptor, *iboga* alkaloids, 8, 41, 51

serotonin transporter (SERT), *iboga* alkaloids and, 6, 8, 49, 81, 84-86, 108, 117, 167-168,

sigma receptors

affinity, ibogaine, 10, 41, 81, 178-180
affinity, 18-MC, 41, 179-181
affinity, noribogaine, 41, 179-180, 185
apoptosis and, 176-178, 181-182
general characteristics and functions 174-176
iboga alkaloids and, 173-192
neuroleptics and, 174-175
putative role in ibogaine neurotoxicity, 23-24, 173-191
sigma1 receptor 174-180
sigma2 receptor, calcium signaling and, 177-178
steroids as sigma receptor ligands, 175
tremor and, 186-188
Sisko, Robert, 253, 283

Slovenia, ibogaine scene in, 260-261

sodium channels, ibogaine and 18-MC affinity for, 6, 50

stages of subjective experience in patients treated with ibogaine, 18-19, 286-287, 306-307

substance P, ibogaine and, 11

Taub, Eric, 255-256

tremor

 iboga alkaloids and, 24, 40, 48-49, 60, 104-105, 186-188, 214
 sigma binding affinity and, 186-188

United Kingdom, ibogaine scene in, 264

Venlafaxine, 69

Vocci, Frank, 5, 275

Waltenburg, Carl, 261-263

withdrawal, opioid, human,
 dextromethorphan in, 59
 ibogaine in, 4, 16-17, 155-170, 284, 294-295
 measurement using OOWS (Objective Opiate Withdrawal Scale) 162-164, 172

Wright, Curtis, 32, 250

Yippies 269-271